

Rethinking IoT Security: Understanding and Mitigating Out-of-Band Vulnerabilities

冀晓宇

2023年10月26日

Internet vs. **Internet of Things**

- Connecting people
- Connecting the virtual world

- Connecting everything
- Connecting the physical world

History of IoT

I: Nascent Stage

Connecting vending machines and coffee machines

"Point-2-Point Sensing"

II: Connectivity

RFID + Networked sensing systems

"Networked Sensing"

III: Intelligence

Autonomous systems that can make decision without human intervention.

"Sensing and Control"

2010s-present

1980s-1990s

The Beginning of IoT Devices

1982: CMU's Coke machine

1990: John Romkey's "Internet Toaster"

2000: LG's Internet refrigerator

Stage II: Weirdest IoT Enabled Devices

Stage III: Intelligence Stage: Sensing + Control + Al

 Autonomous Systems (AS) are capable of performing tasks or operations without direct human intervention.

Unmanned vehicles

Drones

Robots

6

Autonomous Systems

- Sensing → Calculating (AI) → Actuating
- Cross-domain interactions between the physical domain and cyber domain

Security Accidents of AS

The root cause of security accidents of vehicles is vulnerabilities.

How to explore IoT-specific vulnerabilities?

You that seek what life is in death,

Now find it air that once was breath.

New names unknown, old names gone:

Till time end bodies, but souls none.

Reader! then make time, while you be, But steps to your eternity.

——by Baron Brooke Fulke Greville

Inspiration of Life: Body or Soul?

The mind was simply the operation of the brain.

Body and Soul of IoT

Does IoT have body and soul?

The digital bits were simply the operation of the analog signals

Soul is Doomed with a Flawed Body

COMMUNICATIONS OF THE ACM | FEBRUARY 2018

Inside Risks
Risks of Trusting
the Physics of Sensors

Protecting the Internet of Things with embedded security.

- Physical signals directly affect thermocouple thermometers
 - Thermocouples measure voltage to infer temperature
 - It is not always the temperature that induces the voltage

Soul is Doomed with a Flawed Body

Technology

NEWS Fire drill knocks ING bank's data centre offline

The History of Vulnerabilities

• A vulnerability is a flaw in a system's design, implementation, or operation and management that could be exploited to violate the system's security policy. ---[IETF RFC 4949]

Vulnerability detection tools

Vulnerability Taxonomy

Traditional Vulnerabilities

Hardware

Software

Network

Protocol

Physical Site

Organization

Vulnerabilities due to function design or implementation in one domain

Ransomware: exploits software vulnerabilities in OS to spread

Iran exploits protocol vulnerabilities in navigation systems to catch US drones

Meltdown: exploits hardware vulnerability in CPU to access sensitive information

Can existing vulnerability taxonomy

cover IoT?

Transition from In-Band to Out-of-Band

• What's missing? Vulnerabilities caused by abnormal cross-domain interaction

In-Band Vulnerabilities (Traditional)

Hardware

Software

Network

Vuln. due to function design or implementation

Protocol

Phy Site

Organization

Ransomware: exploits software vulnerabilities in OS to spread

Iran exploits protocol vulnerabilities to catch US drones

Meltdown: exploits hardware vulnerability in CPU to access information

Out-of-Band Vulnerability

Out-of- A

Cross-

Sensing

Adversary Input

Side Channel Due to abnormal cross-domain

interaction

Tampering thermocouple thermometer readings via electromagnetic waves

New Trends Create Out-of-Band Vulnerability

New trends in the autonomous system
 Out-of-band vulnerabilities.

Device Miniaturization

System Integration

Resource Constraints

Functional Complexity

Software Security vs Complexity

The more complex, the less secure!

Device Miniaturization

Miniaturisation of microphones creates greater out-of-band vulnerabilites

- Nonlinearity Dolphin Attack
 - Photoacoustic effect \(\subseteq \) **Light Command**

System Integration

Mixed-signal chip

Encryption algorithm AES-128

Bluetooth RF signal

Encryption information coupled via substrate

Conventional Side Leak Propagation Channel Leak

In-Band Vulnerability vs. Out-of-Band Vulnerability

In-band vulnerability:

weaknesses due to functional design or implementation flaws in a single domain

Out-of-band vulnerability:

weaknesses due to nonfunctional design flaws during interactions **between domains**

Out-of-Band Vulnerability Types

Out-of-Range

Signal out of design range
Causes distortion of information output

Cross-Sensing

Senses cross-field signals
Causes abnormal backend information

Adversary Input

Specific physical inputs
Causes recognition
errors

Side Channel

Side channel radiation in calculating
Causes system information leakage

1. Out-of-Range

Root causes: the amplitude, shape, frequency of the signal is outside the expected range, resulting in unexpected consequences

Fire drill knocks ING bank's data center offline

Stop running

Running

Vibration sensor

Normal Signal

low-frequency motion signals

Out-of-Range Signal

high-frequency sound waves

SMART failure predicted on hard disk.

Warning: Immediately back-up your data and replace your hard disk drive

1.2 Out-of-Range: Surveillance System

11s

80s of video missing

1:31s

1.3 Out-of-Range: Sound Affects IMU→ Drone Drops

Normal Signal

low-frequency motion signals

Out-of-Range Signal high-frequency sound waves

1.4 Out-of-Range: MEMS Microphones

Normal Signal

voice signal

Out-of-Range Signal ultrasonic signal

Principle

Demo

1.5 Out-of-Range: Capacitors

Normal Signal

voice signal

V5

Out-of-Range Signal ultrasonic signal

CapSpeaker Demo on a Commercial Lamp

Principle

Demo

2. Cross-Sensing

Root cause: Sensors are supposed to sense only specific physical quantities, but can sense other spurious physical quantities and lead to anomalous results and operations

COMMUNICATIONS OF THE ACM | FEBRUARY 2018

Inside Risks Risks of Trusting the Physics of Sensors Protecting the Internet of Things with embedded security.

- Physical signals directly affect thermocouple thermometers
 - Thermocouples measure voltage to infer temperature
 - It is not always the temperature that induces the voltage

2.1 Cross-Sensing: Light → Voice Commands

Reality: Microphones capture acoustic signals & LIGHT signals

2.1 Cross-Sensing: Light → Voice Commands

2.2 Cross-Sensing: Charging Cable Signals — Contact Sensing

2.2 Cross-Sensing: Charging Cable Signals Contact Sensing

How capacitive touchscreens work?

2.2 Cross-Sensing: Charging Cable Signals —> Contact Sensing

2.2 Cross-Sensing: Charging Cable Signals —> Contact Sensing

■ Injection attack

Create ghost touches

Pick up a phone call

■ Alteration attack
Change the user input

■ **DoS attack**Disable the touch input

Can not operate the phone

2.3 Cross-Sensing: Sound Wave -> Position Error Signal

Normal sensing

Position Error Signal

Cross-sensing

Sound wave signal

2.3 Cross-Sensing: Sound Wave -> Position Error Signal

original

raw

filtered

3. Adversary Input

Root cause: An input in the physical domain causes an adversarial example in the cyber domain, resulting in misclassification or misdetection

Image adversarial example attack

(OIS)

3.1 Adversary Input: Blurred Image Recognition Error

3.1 Adversary Input: Blurred Image Recognition Error

Hiding
"A" → None

heavy, horizontal

Creating
None → "A"

heavy, horizontal

Altering
"A" → "B"

heavy, anticlockwise

Setup Consequences

3.1 Adversary Input: Blurred Image -> Recognition Error

The car is recognized as a pedestrian

The light is recognized nnot be as a truck recognized

Ground Truth

Real-World Attack

3.2 Adversary Input: Laser -> Recognition Error

Attack scenario and principle

3.2 Adversary Input: Laser → Recognition Error

Optimization Hiding

Optimization Creating

Point Cloud

Attack results

Point Cloud

Attack Detection

4. Side Channel

Root cause: electronic devices such as chips generate multi-physical side channel leakage of electromagnetic, RF, acoustic and optical waves related to the processed information

Measuring the EM leak to recover the key

4.1 Side Channel: Encryption algorithm Bluetooth RF Signal

2500

Stop

Side channel encryption algorithm → BT RF signal

Mixed-signal chip

Encryption algorithm **AES-128**

Encryption information coupled via substrate

TX TX 2000 Baseband frequency (KHz) 1500 1000 500 2 10 12 Time (ms)

Start TX + encryption

RF signal

Start

information **Bluetooth** modulation

Frame boundary

Encrypted

4.2 Side Channel: App State > Power Cable Signal

Side channel

application working state → power cable signal

 How to detect voice recorder?

 Using the side channel of EM radiation

Identify an offline recorder by measuring its EMR

Unique pattern of EMI radiated by ADC

ADC pattern of Sogou C1

With and without input

- Overall recorders detection accuracy is 92.17% with a Recall of 86.14%
- Average True Negative Rate for 21 interfering devices is 95.05%

Targeted recorders

Interfering devices

How to **DETECT** and **MITIGATE**

out-of-band vulnerabilities?

Out-of-Band Vulnerability Scanning Toolkit

- Automates the detection of over-limit signal and cross-sensing vulnerabilities.
- **Discovered 10+ new vulnerabilities in sensors** including cameras, LiDAR, microphones, accelerometers, etc.

OOB Scanning Toolkit

Application

Application 1:
Autonomous Vehicle

Application 2: Internet of Things

Mitigating Out-of-Band Security Threat

- Solution 1: Eliminate out-of-band vulnerabilities from system design
- Solution 2: Usable attack detection and prevention

Solution 1

Module Fidelity Design

Match ideal design with non-ideal characteristics

Signal Filtering & Shielding

Filter over-limit signals
Shield cross-field signals

Solution 2

Attack Detection & Elimination

Identify and intercept attacks

System Robustness Enhancement

Fuse information and enhance robustness

Future work

How to cope with Out-of-band vulnerabilities?

Promote research on:

- Out-of-band theory and root cause
- Quantitative analysis and detection
- Systematic defense without affecting in-band functions
- Open platform for cross-domain research

Summary

- Balance 'in-band' and 'out-of-band' vulnerability
- Integrated spectrum signal security risks
 - RF, Acoustic, Lightwave...
- Testing is important!
 - Systematically exploit vulnerability
 - Fuzzy testing takes into account both in-band and out-of-band

We committed to making the IOT more secure!

Thanks

Email: xji@zju.edu.cn

HOME PAGE: http://www.usslab.org